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TL;DR

Deeper neural networks are harder to train; this deep residual learning framework substantially
eases training. Layers reference layer inputs instead of learning unreferenced functions. These
residual networks are easier to optimize, and continue to gain accuracy from increased depth.
Residual nets with more depth are still less complex than VGG nets.

Introduction
Deep convolutional neural networks have been a breakthrough for image classification. Evidence
reveals that network depth is of crucial importance. Top-performing architectures benefited from
very deep models. However, the phenomenon occurs where degradation happens with more
layers. Higher training error, and validation error is present, and is not caused by overfitting. The
deep residual learning framework addresses this
degradation problem. It explicitly lets stacked layers fit
a residual mapping. “Shortcut connections” are added

to skip one or more layers. They perform identity Fix) .
mapping, and their outputs are added to the outputs of identity
the stacked layers. Fix)+x &

Figure 2. Residual learning: a bunlding block.

Deep Residual learning

Let H(x) represent an underlying mapping of a few stacked layers. If some stacked layers can
accurately approximate complicated functions, then it is fair to say that it can also approximate a
function H(x) - x. So rather than expect stacked layers to approximate H(x), we can expect them
to approximate a residual function F(x) = H(x) - x, or F(x) + x = H(x). Both functions should be
able to be approximated, but the training difficulty may be different. This reformulation of the
network addresses the degradation problem. The degradation problem suggests that the solvers
might have difficulties in approximating identity mappings by multiple nonlinear layers. The
new framework allows the network to simply drive the weights of a layer towards zero if identity
mappings are already ideal (F(x) +x = H(x) — 0 + x = H(x)). In real life, it is unlikely that
identity mappings are completely optimal, but the reformulation simplest the problem for the
solver if the solution for the identity mapping is closer to a zero mapping.
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Experiments
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The VGG-19 model has 19.6 billion FLOPS, while the plain and residual 34 layer networks have
3.6 billion.



