Deep Residual Learning for Image Recognition
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/1512.03385.pdf

TL;DR

Deeper neural networks are harder to train; this deep residual learning framework substantially
eases training. Layers reference layer inputs instead of learning unreferenced functions. These
residual networks are easier to optimize, and continue to gain accuracy from increased depth.
Residual nets with more depth are still less complex than VGG nets.

Introduction
Deep convolutional neural networks have been a breakthrough for image classification. Evidence
reveals that network depth is of crucial importance. Top-performing architectures benefited from
very deep models. However, the phenomenon occurs where degradation happens with more
layers. Higher training error, and validation error is present, and is not caused by overfitting. The
deep residual learning framework addresses this
degradation problem. It explicitly lets stacked layers fit
a residual mapping. “Shortcut connections” are added

to skip one or more layers. They perform identity Fix) .
mapping, and their outputs are added to the outputs of identity
the stacked layers. Fix)+x &

Figure 2. Residual learning: a bunlding block.

Deep Residual learning

Let H(x) represent an underlying mapping of a few stacked layers. If some stacked layers can
accurately approximate complicated functions, then it is fair to say that it can also approximate a
function H(x) - x. So rather than expect stacked layers to approximate H(x), we can expect them
to approximate a residual function F(x) = H(x) - x, or F(x) + x = H(x). Both functions should be
able to be approximated, but the training difficulty may be different. This reformulation of the
network addresses the degradation problem. The degradation problem suggests that the solvers
might have difficulties in approximating identity mappings by multiple nonlinear layers. The
new framework allows the network to simply drive the weights of a layer towards zero if identity
mappings are already ideal (F(x) +x = H(x) — 0 + x = H(x)). In real life, it is unlikely that
identity mappings are completely optimal, but the reformulation simplest the problem for the
solver if the solution for the identity mapping is closer to a zero mapping.

https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/1512.03385.pdf

Experiments

WaG-19 34-layer plain 3d-layer residual
1age mage
vorzay | e
mosdel top-1 err. top-5 err.
i pock 12 VGG-16 [41] 28.07 9.33
. 14 GoogLeNet [44] - 9.15
| tutcom, 1z | | 7T corm, &4, /2 PReLU-net [13] 24 27 T3R8
i w%r- r-In plain-34 28.54 10.02
umE | :un;-r.zu-] [mn;-r.u ResNet-34 A 25.03 1.76
[(dme= | [ResMNet-34 B 2452 746
I hln:w.ﬂl] | u::-.-.u ResMet-34 C 24.19 740
e T ResNet-50 2285 671
F— ResNet-101 21.75 6.05
e ResNet-152 21.43 571
[P";*-“ | ’““"E“‘vf’ Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
el T | [28 com, 228 WGG-16 is based on our test. ResNet-50V101/152 are of option B
[Ciommin] [m:m,, that only uses projections for increasing dimensions.
[dmtemewsiz | | mJn,,:n
T e method top-1 err. top-3 ?T
¥ VGG [£1] (ILSVRC 14) - 843
: :E: GoogLeNet [44] (ILSVRC’ 14) . 7.89
3 VGG [41] (v5) 44 7.1
- [e PReLU-net [13] 21.59 571
sia: 14 " Lo BN-inception [16] 21.99 5.81
[(wemim | [=i ResNet-34 B 21.84 571
[e | [e ResNet-34 C 2153 5.60
[e | Lo ResNet-50 20,74 5.25
[mtemmsm | | HT“’ ResNet-101 19.87 4.60
| HTH ResNet-152 19.38 4.49
l HT‘N Table 4. Error rates (%) of single-model results on the ImageNet
| T validation set (except | reported on the test set).
| % corm, 156
[H:n.-ﬂl method top-5 err. (test)
e VGG [41] (ILSVRC’ 14) 732
— GoogLeNet [44] (ILSVRC' 14) 6.66
e —n — — VGG [41](v3) 6.8
e PReLU-net [13] 494
T BN-inception [16] 482
T ResNet (ILSVRC'15) 3.57
[m..,:..,m Table 5. Error rates (%) of ensembles. The top-5 error is on the
328 corr, 312 test set of ImageMet and reported by the test server.
prorilims ez
[] [it

The VGG-19 model has 19.6 billion FLOPS, while the plain and residual 34 layer networks have
3.6 billion.

